

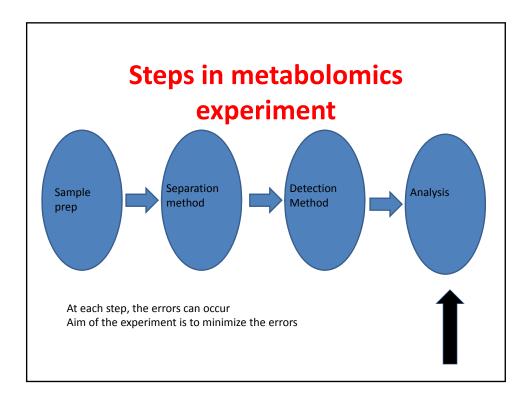
Experimental Design

- LC-MS analysis in a metabolomics experiment will generate >1,000 and even as high as 10,000 discernible and reproducible features
 - All things being equal and using a p-value cutoff of 5%, under the null hypothesis (H₀) 50-500 of the above will appear to be (falsely) significant.
 - Therefore, it is critical to design the experiment to ensure the likelihood of a meaningful outcome.

Selecting the problem

- Power is hard to pre-estimate in a metabolomics experiment
- Exploring a subtle phenomic difference would require a very large number of samples/patients/animals/cells
- Best problems are ones where there are clear cut differences
- Samples of three per group are not adequate for statistical interpretation
- The best design is where the phenomic event varies across the experimental cohort

Avoiding bias


- Variability is unavoidable, but should not be added to unnecessarily
- Carefully control the biological variation
- All sources of non-biological variation should be both minimized (if possible) and evenly distributed across all groups
- Randomly process the samples from each group and randomize the order in which the samples are analyzed
 - Requires the services of an experienced statistician

Measurement Issues

- Sources of errors at the prep stage
 - Within subject variation
 - Within tissue variation
 - Contamination by cleaning solvents
 - Evaporation of volatiles
 - Calibration uncertainty (LC retention times; masses of ions)

Executing the design

- Make sure that all the samples are collected in the same way
 - Have a standard operating procedure
 - If collecting blood/serum/urine, buy enough sample tubes from the same lot for the entire study
 - Label the samples well and store them in random order in a rack in the freezer

Sample Size and Power Calculation

- Often the number of samples to be used for the experiments is dictated by the reality of resources available, not science.
 - How much money is available for the experiment?
 - What is the cost per sample?
 - Thus, sample size = \$ available through NIH/ cost per sample

Costs for Metabolomics at UAB

- Step 1: untargeted LC-MS analysis
 - Need to run each sample in positive and negative and on reverse phase and normal phase
 - We limit the run times (with re-equilibration) to 30 min so, 4 x 30 min per sample (2 hr)
 - Basic LC-MS charge is **\$175/hr**, so \$350 per sample
 - Preliminary run with 3 samples in each group would cost \$2,100, with discount \$1,890
 - Alternative, 2 groups x 3 samples on reverse-phase and in positive mode only – \$525 – good for a pilot study

Costs for Metabolomics at UAB

- Step 1: now you have a NIH grant
 - For a clinical study consisting of 50 samples in each of two groups and just reverse-phase and positive mode, cost would be \$8,750
 - For all four run conditions, cost is \$35,000
 - In addition, training will be provided to use XCMS, a program developed at Scripps that is freely available, to process the LC-MS data
 - This software will determine which of the ions are statistically significant between the groups.

Costs for Metabolomics at UAB

- Validation and bioinformatics
 - To be discussed later

Fundamentals of Metabolism

- "Metabolites" represent a very wide range of chemical structures
 - Volatiles
 - Gases (H₂, CO₂)
 - Low boiling point (acetone, skatole)
 - lonic
 - Negatively charged (organic acids)
 - Positively charged (amines, amino acids, oligopeptides)
 - Neutrals
 - Hydrophilic (Glucose)
 - Hydrophobic (vitamins A, D, E K; cholesterol esters)
- Mol Wt <1,500 Da

Fundamentals of LC separation

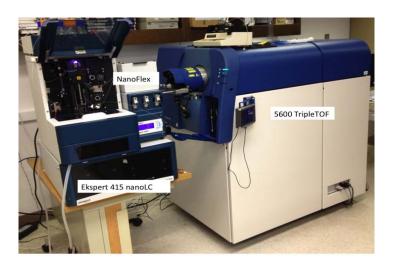
- The goal in untargeted metabolomics is to collect as much data as possible
- Requires two types of chromatography
 - Reverse-phase columns (C₄, C₈ or C₁₈ hydrocarbons attached to silica)
 - Separation on the basis of hydrophobicity
 - · Increasing gradient of acetonitrile or methanol in aqueous
 - Normal or HILIC phases
 - Separation on the basis of hydrophilicity
 - Decreasing gradient of acetonitrile or methanol in aqueous

Fundamentals of the interface

- Electrospray ionization (ESI)
 - For compounds that are naturally charged at the pH of the mobile phase
 - Positive
 - Negative
- Atmospheric pressure chemical ionization (APCI)
 - Good for compounds that do not naturally carry a charge
 - Positive
 - Negative

Mass spectrometer analyzers

- Quadrupole
 - A mass filter with high sensitivity, but low mass accuracy and mass resolution, slow scan speed
- Time-of-flight (TOF)
 - Good mass accuracy and mass resolution, highest scan speed
- Ion motion analyzers
 - Orbitrap, Fourier Transform ion cyclotron resonance (FT-ICR)
 - Highest mass accuracy and mass resolution, but slow compared to the quadrupoles and TOF detectors


Other parameters to consider

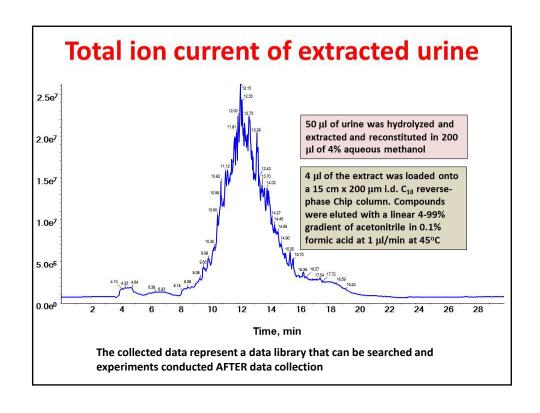
- pH of the mobile phase
 - 0.1% formic acid
 - 10 mM NH₄OAc
- Temperature
 - Must be kept constant
 - Elevated temperature lowers solvent viscosity
- Chemical derivative
 - Reagents for keto- and aldo-groups

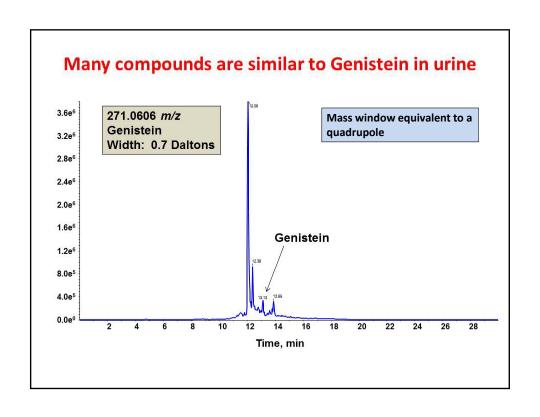
Column size, flow rate and sensitivity

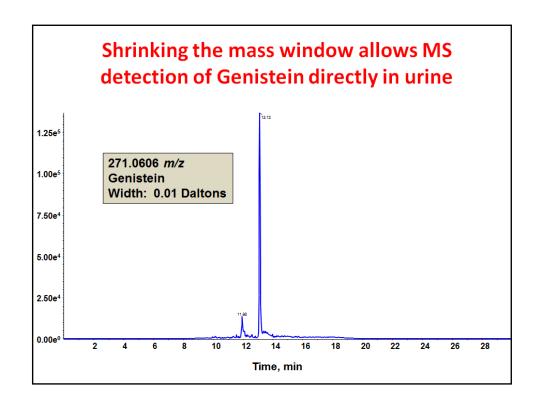
- Regular flow (2.1-4.6 mm ID)
 - $-200 1000 \mu l/min (uPLC)$
- Microflow (0.5-1.0 mm ID)
 - 1-100 μ l/min (10-200 times more sensitive)
- Nanoflow (25-500 μm ID)
 - 25-500 nl/min (800-1000 times more sensitive)
- Column lengths are 10-20 cm
- Nanocolumns best in a LC-on-Chip format
 - Can be made more reproducibly and easier to maintain at constant temperature

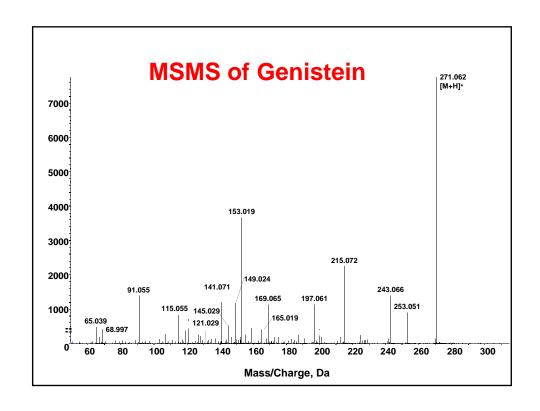
nanoLC-MS instrumentation

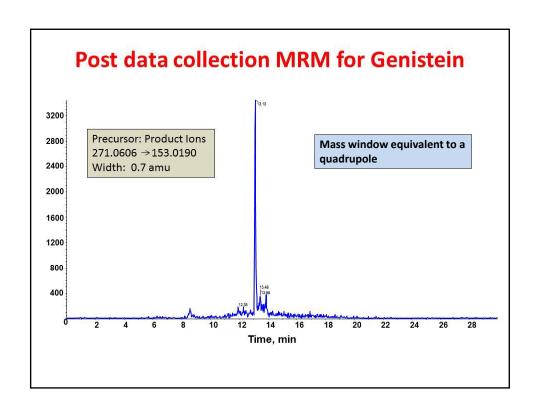
What data are collected in LC-MS?


- Totally untargeted LC-(MS)¹ analysis
 - Collect successive high resolution (~40,000)/high mass accuracy (2-3 ppm) mass spectra
 - All data (over the specified mass range) are collected
 - Acquisition period is 100 msec for Q-TOFs but longer for Orbitraps and FT-ICR instruments


Untargeted, data-dependent analysis


- Think in terms of a 1 sec duty cycle
- For the first 100 msec collect a high resolution (~40,000)/high mass accuracy (2-3 ppm) mass spectrum
 - From the MS1 spectrum, select the most abundant ions: on these MSMS spectra are collected every 50 msec
 - If the MSMS of an ion was collected in the previous 1 sec, it is put on an exclude list for the next 30 sec


Best of both worlds analysis


- Untargeted and targeted analysis performed simultaneously
 - As before, collect high mass resolution/high mass accurate MS1 data for 100 msec (untargeted)
 - Then collect MSMS data on eighteen pre-selected precursor ions for 50 msec (targeted)
 - Repeat data collection in the next second and following second periods
 - This technique is called pseudoMRM

